toppic
当前位置: 首页> 穿越小说> SPSS分析技术:非线性回归;科学种田!肥料应该用多少合适?

SPSS分析技术:非线性回归;科学种田!肥料应该用多少合适?

2020-08-31 07:24:48

基础回顾

前面发过的旧文,需要回顾的朋友,可以点开看看:

数据分析技术:回归分析;自己作的拟合曲线,哭着也要跟着走完?没有必要

SPSS分析技术:曲线回归;用产品售价预测产品销量的尝试

今天介绍用SPSS软件做非线性回归分析。


非线性回归

非线性关系可以分为本质是线性关系的非线性关系和完全非线性关系,有点拗口。在曲线回归总已经介绍,可以通过变量装换,转化为线性关系,并进行线性回归分析的就是本质是线性关系的非线性关系。如果无法通过变量装换,转化为线性关系,无法进行线性回归分析的叫完全非线性关系。今天我们介绍的非线性关系就是完全非线性关系的回归分析。


非线性回归的优势

曲线估计只能用于一个自变量和因变量相关关系的模型的分析,而非线性回归分析可以用来探讨因变量和一组自变量之间的非线性相关模型。非线性回归可以估计因变量和自变量之间任意关系的模型,可以根据自身需要随意设定估计方程的具体形式。因此,非线性回归在实际应用中价值更大,应用范围更广。


非线性回归模型



范例分析

某省农科院新培育了一种高产量农作物,并在海南的试验田中进行实验种植,现有试验田施肥量及其对应的农作物产量数据,根据该数据文件推定施肥量与产量之间的关系。



分析步骤

1、做散点图,观察施肥量与农作物产量的关系;选择菜单【图形】-【旧对话框】-【散点/点状】,将施肥量选为自变量,产量选为因变量。




2、 估计初始值;根据上图,施肥量和产量之间似乎存在线性关系。但是根据实际经验可知,这种推断不正确。因为作物产量不可能随着施肥量的增加而一直增加下去,当产量达到一定水平时,施肥量的增加不会带来产量的进一步提高,二者的关系可以用渐进回归模型:


要确定回归方程,首要估算出参数b1、b2、b3的初始值。由散点图看出,产量最大值接近13,不妨设b1=13;x=0时,y=6,故b2=6-13=-7;b3为散点图中两个分隔较宽的点之间的连线的斜率的倒数,在此取b3=-1.5。


3、参数设置;选择【分析】-【回归】-【非线性】菜单,打开非线性回归对话框。按照下图输入数据。



4、损失函数设置;单击“损失”,设置损失函数。所谓损失函数是指一个包括当前工作文件中的变量以及所设定的参数并通过计算法使之最小化的函数。系统默认状态下,非线性回归过程根据算法将残差平方和最小化为损失函数。如果选择“用户定义的损失函数”,可以再“用户定义的损失函数”列表框中键入或者粘贴一个表达式。字符串常数必须包含在引号或撇号中,数字常数必须按以美式格式键入,并用句点作为小数分隔符。本案例选择系统默认设置。单击“继续”。



5、 参数约束设置;单击“约束,定义参数约束。“约束”是在对解的迭代搜索过程中对参数所允许值的限制。该对话框有两个设置选项:“未约束”和“定义参数约束”。



6、 保存设置;单击“保存”,该对话框提供4种用于保存的数据类型,允许作为新变量的观测值保存于当前文件中。



7、算法选项设置;单击“选项”,该对话框用于设置参数估计的算法和算法的迭代次数、迭代步长和收敛条件等。



结果解释




1、  如上图所示,该案例经过多大20步的迭代估计之后,找到模型的最优解,即 b1、b2、b3的参数估计值13.348、-10.783和-0.418,此外还得到了三个参数值的标准误差和95%置信区间,以及三个参数估计值的相关系数,可以看出各个参数值之间的相关性很高,尤其是b1和b3的相关系数达到0.968,属非常显著的相关关系。


2、 根据上表回归模型的方差分析结果,表中回归行的平方和代表该回归模型所能解释的模型的方差变化,而残差行的平方和代表该非线性回归模型所不能解释的方差变化。二者的和即为未修正的总计,它是总的残差平方和,而R2=1-(残差平方和)/(已更正的平方和)=0.907,说明该模型能解释因变量90.7%的变异量,即该非线性模型的拟合优度很高。根据以上分析可以确定,该分析所获得的回归模型显著。

根据线性回归模型:


可得回归方程:


从散点图可以知道,目前采集到的数据还不足够,因为图中没有出现明显的平缓趋势。为了找到最合适的施肥量,可以通过得到的回归方程,做出自变量(施肥量)范围更广的曲线,找出曲线的平缓位置,这个位置对应的横轴值就是合理的施肥量。


所有例题的数据文件都会上传到QQ群中,需要对照练习的朋友可以前往下载。


温馨提示:

  • SPSS教学视频,请点击《SPSS入门基础》视频教程

  • 生活统计学QQ群:134373751,用于分享文章提到的各种案例资料、软件、数据文件等。支持各种资料的直接下载和百度云盘下载。

  • 生活统计学微信交流群用于各自行业的数据研究项目及其成果交流分享;由于人数大于100人,请添加微信possitive2,拉您入群。

  • 数据分析咨询,请点击首页下方“互动咨询”板块,获取咨询流程!


友情链接