地球上的生命都适应了这颗星球的自转。很多年前我们就已经知道,包括人类在内的各种生物都拥有一个内在的生物钟来帮助它们和适应一天的规则节律。
但是这个生物钟究竟是怎样运作的呢?
杰弗理·霍尔(Jeffrey C. Hall)、迈克尔·罗斯巴殊(Michael Rosbash)和迈克尔·杨(Michael W. Young)深入钻研了我们的生物钟,并且阐释了它内在的原理。他们的发现阐释了植物、动物以及人类如何调节自己的生物节律,使其与地球的旋转保持同步。
为表彰他们的发现,2017年诺贝尔生理学或医学奖,颁给了他们——
2013年,杰弗理·霍尔获得邵逸夫奖时,曾向多年来作为他们研究对象的果蝇致敬——“如果没有它们,我们的研究就难以进行,更别说要取得这样的成果了。”
没错,这三位诺奖得主正是使用果蝇作为生物模型,分离出了一个控制生物正常昼夜节律的基因。他们发现这种基因可以编码一种蛋白质,这种蛋白质夜间在细胞内聚集,白天降解。他们随后确定了这个生物钟的其他蛋白质成员,发现了这个细胞内自我维持的钟表受怎样的机制控制。我们现在也认识到,其他多细胞生物(包括人类)的生物钟也遵循相同的机制。
我们的生物钟以非同寻常的精密程度,使我们的生理机制适应每天截然不同的各个时段。生物钟调控着一些关键机能,如行为、激素水平、睡眠、体温以及新陈代谢。
我们的健康安乐会因为外部环境和内部生物钟不匹配而受到影响,比如旅行跨越了几个时区,就会体会到“时差感”。有一些迹象表明,如果生活方式和我们内部时钟要求的节律之间有慢性的不匹配,那么这样的不匹配就和多种疾病发病率的增加存在相关。
我们的生物钟
大多数生物有机体对于环境变化会作出和适应。在世纪,天文学家让-雅克·道托思·麦兰(Jean Jacquesd’Ortous de Mairan) 研究了含羞草属植物,发现植物的叶子在白天朝着太阳舒展,而黄昏则闭拢。他想知道如果把植物长时间置于黑暗之中会怎么样。结果发现,不管有无阳光,叶子都继续维持它们正常的昼夜节律(图1)。植物似乎是有它们自己的生物钟的。
图1 一个内源性生物钟。含羞草植物的叶片在白天朝向太阳展开,但在黄昏时合拢(图片上半部分)。让-雅克·道托思·麦兰将这些植物放置在持续黑暗的环境中(图片下半部分),发现叶片仍然保持着它们平时的昼夜节律,即使没有光线变化也是如此。
其他研究者发现,不只是植物,动物和人类也同样拥有生物钟,帮助我们在生理上为一天的波动做好准备。这种规律的适应被称为昼夜节律(circadian rhythm),源自拉丁文词汇“circa”(意为“大约”)以及“dies”(意为“一天”)。但我们内源性的昼夜生物时钟究竟如何工作,这还是个谜。
今年的三位诺贝尔奖得主也在研究果蝇,他们的研究目标是弄清生物钟究竟是如何运作的。1984年,波士顿布兰戴斯大学的杰弗理·霍尔和迈克尔·罗斯巴殊的团队,以及在纽约洛克菲勒大学的迈克尔·杨,成功地分离出了period基因。接着,杰弗理·霍尔和迈克尔·罗斯巴殊的研究发现,被period基因编码的PER蛋白在夜间累积,在白天降解。就这样,PER蛋白水平在24小时周期内与昼夜节律同步震荡。
自调节的生物钟机制
下一个关键目标便是弄清楚这种昼夜振荡是如何产生和维持的。杰弗理·霍尔和迈克尔·罗斯巴殊猜测,PER蛋白阻断了period基因的活动。他们推论说,使用一个抑制反馈回路,PER蛋白应该可以阻断其自身的合成,从而在一个连续的循环式节律过程中自己调节自己的浓度(图2A)。
图2A,period基因反馈调节的简化图示。这张图显示了24小时昼夜振荡中按顺序发生的一系列事件。当节律基因period活跃时,对应的信使RNA被生产出来。信使RNA被转移到细胞质中,并作为模板生产PER蛋白。PER蛋白在细胞核中累积,period基因活性受到抑制。这导致了抑制反馈机制,它是昼夜节律的基础。
这个机制十分迷人,但是谜题的某些部分仍不是很清楚。
为了抑制period基因的活性,产生于细胞质中的PER蛋白质必须达到细胞核,也就是遗传信息存在的地方。杰弗理·霍尔和迈克尔·罗斯巴殊证明,PER蛋白在晚上会在细胞核里积累,但是它是怎么去到这里的?
1994年,迈克尔·杨发现了第二个不受时间影响的控制生物钟的基 因“timeless”负责编码TIM蛋白;而TIM蛋白是正常昼夜节律所需的。他以十分优美的工作揭示,当TIM蛋白与PER蛋白结合在一起之后,它们就能进入到细胞核中,在那里阻断了period基因的活性,让这个抑制反馈回路得以闭合成环(图2B)。
图2B 一个简化的昼夜节律钟的分子组成。
这样一个反馈调控机制解释了细胞蛋白水平的振荡是怎么产生的,但问题还没完全解决:这种震荡的频率又是受什么控制的呢?迈克尔·杨则发现另一个基因“doubletime”所编码的DBT蛋白可以延迟PER蛋白的积累。这让人们得以一窥细胞是如何调节其蛋白振荡以更好地匹配24小时周期。
三位诺奖得主的这个范式转移级别的发现,奠定了生物钟关键的机制基础。接下来几年,生物钟机制中的其他分子元件也被发现,解释了生物钟的稳定性及功能。例如,今年的诺奖得主们发现了激活周期基因的需要的另几个蛋白,以及光让生物钟同步所需的蛋白。
给人类的生理机制计时
生物钟涉及到我们复杂生理机制的多种方面。我们现在知道了包括人类在内的所有多细胞生物都使用了类似的机制来控制昼夜节律。我们的大部分基因都受到生物钟的调节,因此,一个精心校准过的昼夜节律会调整我们的生理机制来适应一个昼夜内的不同阶段(图3)。自从三位获奖者做出这些开拓性的发现以来,昼夜节律生物学已经发展成为一个广泛而高度活跃的研究领域,对我们的健康和幸福有着重要影响。
图3 生物钟让我们的生理能够并适应一天的不同阶段。我们的生物钟可以帮助调节睡眠、进食、激素释放、血压和体温。
云美国际医疗健康平台
是一家致力于为高净值人群提供精准医疗、个性化诊疗、全程顾问式私人医生及全球知名医疗机构转诊服务的医疗大健康平台。
汇聚国内外顶尖权威基因检测产品以及全球最前沿、最顶级的抗衰老、肿瘤防治方案、帮助健康人群远离癌症与重大疾病,让生活更显完美品质。
云美为您定制海外健康筛查旅游产品,享受休闲度假之余呵护您的健康与活力。
云美国际医疗健康平台,为高净值人群推出“抗衰防癌基因检测”套餐,一次性针对30000种致癌基因遗传进行测序,覆盖24种不同肿瘤类型,全面揭示患癌风险。
关注我们,了解更多精准医疗最新资讯,请扫以下二维码。